

Algorithms

Minimum Spanning Trees

 2

Minimum Spanning Trees
● Suppose we wish to connect all of the computers in a new

office building using the least amount of cable. We can model
the problem using a weighted graph G, whose vertices
represent the computers, where the weight w((v,u)) of edge
(v,u) is equal to the amount of cable needed to connect
computer v to computer u.

● Given a weighted undirected graph G, we are interested in
finding a tree, T, that contains all the vertices in G and
minimizes the sum

w(T) = Σ w(v,u)

(v,u) ε T

 3

Minimum Spanning Trees
● A tree such as this that contains every vertex of a

connected graph is said to be a spanning tree,
and the problem of computing a spanning tree, T,
with smallest total weight is known as the
minimum spanning tree (MST) problem.

● The MST problem is an example of an
optimization problem.

● In an optimization problem we are given a set of
constraints and an optimization function.

● Solutions that satisfy the constraints are called
feasible solutions.

 4

Minimum Spanning Trees
● A feasible solution for which the optimization

function has the best possible value is called
an optimal solution.

● There are many different algorithms for
solving the MST problem of which we will look
at 2

● Both of these algorithms are applications of
the greedy method.

 5

The Greedy Method

● In the greedy method we attempt to construct
an optimal solution in stages.

● At each stage we make a decision that appears
to be the best (under some criterion) at that
stage.

● A decision made in one stage is not changed in
a later stage, so each decision will assure
feasibility.

● The criterion used to make the greedy decision
at each stage is called the greedy criterion.

 6

The Greedy Method

● The sequence starts from some well
understood starting condition, and computes
the cost for that initial condition.

● Iteratively make additional choices by
identifying the decision that achieves the best
from all of the choices that are currently
possible.

● The greedy method does not always lead to an
optimal solution but works well for some
algorithms.

 7

Kruskal’s Algorithm
● Kruskal’s Algorithm is one that can be used to construct a minimum

spanning tree for a graph.
● For a graph which contains n vertices, Kruskal’s algorithm selects the

n - 1 edges one at a time using the greedy criterion:
From the remaining edges, select a least-cost edge that does not
result in a cycle when added to the set of already selected edges

v1
v2

v3

v6

v4
v5

v7

2

1

1 3

8 45

2

4

6

10

7

 8

Kruskal’s Algorithm
● Edge Weight

(v1, v4) 1
(v6, v7) 1
(v1, v2) 2
(v3, v4) 2
(v2, v4) 3
(v1, v3) 4
(v4, v7) 4
(v3, v6) 5
(v5, v7) 6
(v4, v5) 7
(v4, v6) 8
(v2, v5) 10

 9

Kruskal’s Algorithm
● We start by choosing the edge with the smallest weight (we can

choose either (v1, v4) or (v6, v7). We will choose (v1, v4).
● Next, from the remaining edges, we will choose the edge with the

smallest weight that does not create a cycle, i.e. (v6, v7) and so on

Edge Weight Action
(v1, v4) 1 Accepted

(v6, v7) 1 Accepted

(v1, v2) 2 Accepted

(v3, v4) 2 Accepted

(v2, v4) 3 Rejected

(v1, v3) 4 Rejected

(v4, v7) 4 Accepted

(v3, v6) 5 Rejected

(v5, v7) 6 Accepted

 10

Kruskal’s Algorithm
v1

v2

v3

v6

v4
v5

v7

v1
v2

v3

v6

v4
v5

v7

1

 11

Kruskal’s Algorithm
v1

v2

v3

v6

v4
v5

v7

v1
v2

v3

v6

v4
v5

v7

1

1

1

1

2

 12

Kruskal’s Algorithm
v1

v2

v3

v6

v4
v5

v7

v1
v2

v3

v6

v4
v5

v7

1

1

1

1

2

2

2

2
4

 13

Kruskal’s Algorithm

v1
v2

v3

v6

v4
v5

v7

1

1

2

2
4

6

 14

Prim’s Algorithm
● Prim’s algorithm, like Kruskal’s, constructs the minimum spanning

tree by selecting edges one at a time.
● The greedy criterion used to determine the next edge to select is:

From the remaining edges, select a least-cost edge whose addition
to the set of selected edges forms a tree

● Prim’s algorithm begins with a tree that contains a single vertex
● At any point in the algorithm, we can see that we have a set of

vertices that have already been included in the tree, the rest of the
vertices have not.

● The algorithm then finds, at each stage, a new vertex to add to the
tree by choosing the edge (u,v) such that the cost of (u,v) is the
smallest among all edges where u is in the tree and v is not.

 15

Prim’s Algorithm
v1

v2

v3

v6

v4
v5

v7

v1
v2

v3

v6

v4
v5

v7

1

 16

Prim’s Algorithm
v1

v2

v3

v6

v4
v5

v7

v1
v2

v3

v6

v4
v5

v7

1

1

2

2

2

 17

Prim’s Algorithm
v1

v2

v3

v6

v4
v5

v7

v1
v2

v3

v6

v4
v5

v7

1

1

2

2

2

2
4

4

1

 18

Prim’s Algorithm

v1
v2

v3

v6

v4
v5

v7

1

1

2

2
4

6

	Slide 1
	Minimum Spanning Trees
	Slide 3
	Slide 4
	The Greedy Method
	Slide 6
	Kruskal’s Algorithm
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Prim’s Algorithm
	Slide 15
	Slide 16
	Slide 17
	Slide 18

