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Minimum Spanning Trees
● Suppose we wish to connect all of the computers in a new 

office building using the least amount of cable.  We can model 
the problem using a weighted graph G, whose vertices 
represent the computers, where the weight w((v,u)) of edge 
(v,u) is equal to the amount of cable needed to connect 
computer v to computer u.

● Given a weighted undirected graph G, we are interested in 
finding a tree, T, that contains all the vertices in G and 
minimizes the sum

w(T) = Σ w(v,u)

(v,u) ε T
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Minimum Spanning Trees
● A tree such as this that contains every vertex of a 

connected graph is said to be a spanning tree, 
and the problem of computing a spanning tree, T, 
with smallest total weight is known as the 
minimum spanning tree (MST) problem.

● The MST problem is an example of an 
optimization problem.

● In an optimization problem we are given a set of 
constraints and an optimization function.

● Solutions that satisfy the constraints are called 
feasible solutions.
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Minimum Spanning Trees
● A feasible solution for which the optimization 

function has the best possible value is called 
an optimal solution.

● There are many different algorithms for 
solving the MST problem of which we will look 
at 2

● Both of these algorithms are applications of 
the greedy method.
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The Greedy Method

● In the greedy method we attempt to construct 
an optimal solution in stages.

● At each stage we make a decision that appears 
to be the best (under some criterion) at that 
stage.

● A decision made in one stage is not changed in 
a later stage, so each decision will assure 
feasibility.

● The criterion used to make the greedy decision 
at each stage is called the greedy criterion.
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The Greedy Method

● The sequence starts from some well 
understood starting condition, and computes 
the cost for that initial condition.  

● Iteratively make additional choices by 
identifying the decision that achieves the best 
from all of the choices that are currently 
possible.

● The greedy method does not always lead to an 
optimal solution but works well for some 
algorithms.
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Kruskal’s Algorithm
● Kruskal’s Algorithm is one that can be used to construct a minimum 

spanning tree for a graph.
● For a graph which contains n vertices, Kruskal’s algorithm selects the 

n - 1 edges one at a time using the greedy criterion:
From the remaining edges, select a least-cost edge that does not 
result in a cycle when added to the set of already selected edges
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Kruskal’s Algorithm
● Edge  Weight

(v1, v4) 1
(v6, v7) 1
(v1, v2) 2
(v3, v4) 2
(v2, v4) 3
(v1, v3) 4
(v4, v7) 4
(v3, v6) 5
(v5, v7) 6
(v4, v5) 7
(v4, v6) 8
(v2, v5) 10
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Kruskal’s Algorithm
● We start by choosing the edge with the smallest weight (we can 

choose either (v1, v4) or (v6, v7).  We will choose (v1, v4).
● Next, from the remaining edges, we will choose the edge with the 

smallest weight that does not create a cycle, i.e. (v6, v7)  and so on

Edge  Weight Action
(v1, v4) 1 Accepted

(v6, v7) 1 Accepted

(v1, v2) 2 Accepted

(v3, v4) 2 Accepted

(v2, v4) 3 Rejected

(v1, v3) 4 Rejected

(v4, v7) 4 Accepted

(v3, v6) 5 Rejected

(v5, v7) 6 Accepted
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Kruskal’s Algorithm
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Kruskal’s Algorithm
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Kruskal’s Algorithm
v1

v2

v3

v6

v4
v5

v7

v1
v2

v3

v6

v4
v5

v7

1

1

1

1

2

2

2

2
4



  13

Kruskal’s Algorithm
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Prim’s Algorithm
● Prim’s algorithm, like Kruskal’s, constructs the minimum spanning 

tree by selecting edges one at a time. 
● The greedy criterion used to determine the next edge to select is:

From the remaining edges, select a least-cost edge whose addition 
to the set of selected edges forms a tree

● Prim’s algorithm begins with a tree that contains a single vertex
● At any point in the algorithm, we can see that we have a set of 

vertices that have already been included in the tree, the rest of the 
vertices have not.  

● The algorithm then finds, at each stage, a new vertex to add to the 
tree by choosing the edge (u,v) such that the cost of (u,v) is the 
smallest among all edges where u is in the tree and v is not.
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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