Algorithms

Minimum Spanning Trees

Minimum Spanning Trees

- Suppose we wish to connect all of the computers in a new office building using the least amount of cable. We can model the problem using a weighted graph G, whose vertices represent the computers, where the weight w((v,u)) of edge (v,u) is equal to the amount of cable needed to connect computer v to computer u.
- Given a weighted undirected graph G, we are interested in finding a tree, T, that contains all the vertices in G and minimizes the sum

 $w(T) = \Sigma w(v,u)$ (v,u) ϵT

Minimum Spanning Trees

- A tree such as this that contains every vertex of a connected graph is said to be a spanning tree, and the problem of computing a spanning tree, T, with smallest total weight is known as the minimum spanning tree (MST) problem.
- The MST problem is an example of an **optimization problem**.
- In an optimization problem we are given a set of constraints and an optimization function.
- Solutions that satisfy the constraints are called **feasible solutions**.

Minimum Spanning Trees

- A feasible solution for which the optimization function has the best possible value is called an **optimal solution**.
- There are many different algorithms for solving the MST problem of which we will look at 2
- Both of these algorithms are applications of the **greedy method**.

The Greedy Method

- In the greedy method we attempt to construct an optimal solution in stages.
- At each stage we make a decision that appears to be the best (under some criterion) at that stage.
- A decision made in one stage is not changed in a later stage, so each decision will assure feasibility.
- The criterion used to make the greedy decision at each stage is called the greedy criterion.

The Greedy Method

- The sequence starts from some well understood starting condition, and computes the cost for that initial condition.
- Iteratively make additional choices by identifying the decision that achieves the best from all of the choices that are currently possible.
- The greedy method does not always lead to an optimal solution but works well for some algorithms.

- Kruskal's Algorithm is one that can be used to construct a minimum spanning tree for a graph.
- For a graph which contains n vertices, Kruskal's algorithm selects the n - 1 edges one at a time using the greedy criterion:
 From the remaining edges, select a least-cost edge that does not result in a cycle when added to the set of already selected edges

Weight Edge • (V_1, V_4) 1 (V_6, V_7) 1 2 (V_1, V_2) 2 (V_3, V_4) 3 (V_2, V_4) 4 (V_1, V_3) (V_4, V_7) 4 5 (V_3, V_6) (V_5, V_7) 6 7 (V_4, V_5) 8 (V_4, V_6) (V_2, V_5) 10

- We start by choosing the edge with the smallest weight (we can choose either (v₁, v₄) or (v₆, v₇). We will choose (v₁, v₄).
- Next, from the remaining edges, we will choose the edge with the smallest weight that does not create a cycle, i.e. (v₆, v₇) and so on

Edge	Weight	Action
(V_1, V_4)	1	Accepted
(V ₆ , V ₇)	1	Accepted
(V_1, V_2)	2	Accepted
(V ₃ , V ₄)	2	Accepted
(V ₂ , V ₄)	3	Rejected
(V ₁ , V ₃)	4	Rejected
(V_4, V_7)	4	Accepted
(V ₃ , V ₆)	5	Rejected
(V_5, V_7)	6	Accepted

Prim's Algorithm

- Prim's algorithm, like Kruskal's, constructs the minimum spanning tree by selecting edges one at a time.
- The greedy criterion used to determine the next edge to select is: From the remaining edges, select a least-cost edge whose addition to the set of selected edges forms a tree
- Prim's algorithm begins with a tree that contains a single vertex
- At any point in the algorithm, we can see that we have a set of vertices that have already been included in the tree, the rest of the vertices have not.
- The algorithm then finds, at each stage, a new vertex to add to the tree by choosing the edge (u,v) such that the cost of (u,v) is the smallest among all edges where u is in the tree and v is not.

Prim's Algorithm

